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Reviewer 1

Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? Yes. I assessed the appropriateness of the statistical methods. 

Were you able to directly test the methods? No. 

Comments to author:

In this manuscript, the authors propose a method HyperChIP for identifying genomic regions 
with hypervariable signals from ChIP-seq or ATAC-seq samples. Traditionally, most ChIP-seq 
and ATAC-seq analyses focus on identifying peaks or analyzing differential mean signals 
between conditions. As ChIP-seq and ATAC-seq studies with a relatively large number of 
samples become more prevalent, analyzing variability across samples without condition labels 
become increasingly more important. The HyperChIP method can provide a solution to this 
problem. The method is based on a statistical model that characterizes hypervariability after 
accounting for the mean-variance relationship. The authors also develop a method that uses low-
intensity regions to estimate a null distribution for determining the statistical significance of the 
hypervariable signals. The authors have compared HyperChIP with several commonly used 
variance measures and applied it to analyze a large pan-cancer ATAC-seq dataset to demonstrate 
its performance and practical utility. Overall, the manuscript is well written. The method and 
results are logically and clearly presented. The HyperChIP method can adds a useful new tool to 
the ChIP-seq and ATAC-seq data analysis toolbox. I have a few comments below which I hope 
can help the authors to improve their manuscript. 

Major: 
1. To infer the null distribution, the unobserved \mu_i in formula (3) is replaced by its estimate 
\hat{\mu}_i. Using the estimated \mu_i will introduce additional uncertainty so that the ratio 
between \hat{t}_i and f(\hat{\mu}_i) in theory is no longer an F-distribution. The authors may 
want to evaluate and/or discuss how this will influence their statistical inference results. Will the 
F-distribution underestimate the uncertainty/variability and result in optimistic p-values and 
FDR? 

2. The comparisons between HyperChIP and the other methods in Figure 1 and Figure 2 are nice 
and informative. For the tumor progression analysis in Figure 5F and 5G and for the pan-cancer 
analysis in Figure 6, it would be interesting to compare HyperChIP with the other methods too 
(i.e. those methods shown in Figures 1 and 2) to see whether using the same number of HVRs 
obtained from the other methods can achieve similar results/performance. 

3. The authors examined the relationship between single nucleotide variants and HVRs. In tumor 
samples, copy number variations (CNVs) can be prevalent. CNVs often involve more than one 
nucleotide. I wonder whether it is feasible here to also analyze the relationship between the 
hypervariable signals and CNVs. If this analysis feasible, it would be useful to know to what 



extent the hypervariable signals depend on CNV? If it is not feasible, it might be helpful to 
discuss it. More generally, it will be useful to know whether analyzing hypervariable signals is 
only useful in cancer studies (where changes in the genomic landscape including genomic DNA 
are substantial) or it is also useful for studying normal samples. 

4. In the discussion, the authors illustrated that proximal and distal regions have different 
variability (i.e. different \gamma estimates). It will make the argument much stronger if the 
authors can show the consequences of not separating proximal and distal regions in the analyses, 
for example, for the analyses in Figures 1,2,5,6. 

Reviewer 2
Were you able to assess all statistics in the manuscript, including the appropriateness of statistical 
tests used? No. 

Were you able to directly test the methods? No. 

Comments to author:

In this manuscript, the authors present HyperChIP, a new statistical tool that can identify 
genomic regions with hypervariable ChIP-seq and ATAC-seq signals across samples. 
HyperChIP uses scaled variances that account for the mean-variance dependence to rank 
genomic regions. An advantage of this method over existing methods is that it diminishes the 
influence of true hypervariable regions (HVRs) on model fitting, which increases the statistical 
power of the tool for detecting HVRs. The authors applied this method to analyze ChIP-seq and 
ATAC-seq data across tumors from patient samples in three large datasets to identify 
hypervariable regions (HRVs) in these samples. Further examination of the HVRs highlighted 
the need to analyze proximal and distal regions separately to avoid suppression of the statistical 
power for identifying proximal HRVs, which have lower variability than distal regions. The 
authors then used HyperChIP to identify HRVs among a pan-cancer ATAC-seq dataset. 
Together with a motif analysis of the HRVs, they defined classes and super classes of cancer 
types among the ATAC-seq profiles. 

The manuscript could be improved by addressing the following points. 

1. In this manuscript, the authors emphasize the need for a statistical method specifically to 
identify HRVs in human datasets, and indeed demonstrate the utility of HyperChIP to 
accomplish this task. There is no mention or discussion, however, of the broader need and utility 
of this tool outside of non-cancer human datasets or in other organisms. For example, it seems 
that HyperChIP could be used to identity HVRs among large ChIP-seq or ATAC-seq datasets in 
mouse datasets from heterogeneous cell populations. The authors should discuss possible broader 
applications of HyperChIP, which may increase utilization of this tool by other research groups. 

2. The quality of ChIP-seq datasets is inherently variable, and prior publication of a prior 
dataset(s) does not guarantee its quality. Although the authors did employ normalization methods 



to attempt to account for variations in absolute signal strength as well as signal-to-noise ratios 
among datasets, low quality datasets may be problematic and confound results. What quality 
metrics (e.g. FRiP) or standards were used to determine inclusion or exclusion of both ChIP-seq 
and ATAC-seq datasets used in the analyses? 

3. The ChIP-seq datasets selected for evaluation of HyperChIP include histone mark H3K27ac 
and Pol II, neither of which involve sequence-specific binding of a TF. How does HyperChIP 
perform on a sequence-specific TF ChIP-seq dataset (e.g. CTCF)? Given the potential utility of 
HyperChIP in the larger genomic community to define HVRs (or peaks) that have biological 
significance, evaluation of such dataset would be valuable. 

4. The authors define a proximal region as a region with a distance of less than 5kb to a 
transcription start site (TSS), whereas other regions were deemed to be distal regions. A window 
-/+ 5kb to the TSS seems like an excessively large window, especially since regions up to +5kb 
of the TSS are not commonly considered to be "proximal". The authors should justify why they 
chose this particularly large window to define a proximal region. 

5. For the mean-variance trends of associated with different datasets, the following graphs are 
shown: 
H3K27ac proximal regions (observed) - Fig 1A 
H3K27ac proximal regions (scaled) - Fig 1B 
ATAC-seq proximal regions (observed) - Fig 1A 
H3K27ac distal regions (observed) - Supp Fig 1 
ATAC-seq distal regions (observed) - Supp Fig 1 
Pol II proximal regions (observed) - Supp Fig 1 
Pol II distal regions (observed) - Supp Fig 1 

The authors should include the rest of the graphs in the Supplement, showing the observed and 
scaled variances for both proximal and distal regions for all three datasets. 

6. In Supplementary Figure 4 - For the Pol II proximal regions shown in A and B, the authors 
should comment on the (potential) discrepancy in the proportion of high intensity regions ranked 
in the top 2000 HVRs and LVRs. More specifically, why do they see a large rise in the second to 
last column (left to right) of the higher mean intensity for the HVRs (Supp Fig 4A) and a 
corresponding dip in the second to last column (left to right) of the higher mean intensity for the 
LVRs (Supp Fig 4B). This trend seems unusual compared to the other datasets. 

7. In Methods, under "Input matrices for normalization", the authors should replace "genders" 
with "biological sex". 



Reviewer #1: In this manuscript, the authors propose a method HyperChIP for 

identifying genomic regions with hypervariable signals from ChIP-seq or ATAC-seq 

samples. Traditionally, most ChIP-seq and ATAC-seq analyses focus on identifying 

peaks or analyzing differential mean signals between conditions. As ChIP-seq and 

ATAC-seq studies with a relatively large number of samples become more prevalent, 

analyzing variability across samples without condition labels become increasingly 

more important. The HyperChIP method can provide a solution to this problem. The 

method is based on a statistical model that characterizes hypervariability after 

accounting for the mean-variance relationship. The authors also develop a method that 

uses low-intensity regions to estimate a null distribution for determining the statistical 

significance of the hypervariable signals. The authors have compared HyperChIP with 

several commonly used variance measures and applied it to analyze a large pan-

cancer ATAC-seq dataset to demonstrate its performance and practical utility. Overall, 

the manuscript is well written. The method and results are logically and clearly 

presented. The HyperChIP method can adds a useful new tool to the ChIP-seq and 

ATAC-seq data analysis toolbox. I have a few comments below which I hope can help 

the authors to improve their manuscript. 

 

Major: 

1. To infer the null distribution, the unobserved \mu_i in formula (3) is replaced by its 

estimate \hat{\mu}_i. Using the estimated \mu_i will introduce additional uncertainty so 

that the ratio between \hat{t}_i and f(\hat{\mu}_i) in theory is no longer an F-distribution. 

The authors may want to evaluate and/or discuss how this will influence their statistical 

inference results. Will the F-distribution underestimate the uncertainty/variability and 

result in optimistic p-values and FDR? 

Reply: sincerely thanks for this comment. This is a very good point regarding the 

derivation of the null distribution of scaled variances. We have indeed made an 

approximation in formula (3) to make the calculation of scaled variances possible, 

which may increase the uncertainty of the test statistics and may, thus, lead to over-

confident p-values. We expect, however, that the overall p-value distribution across 

genomic regions as well as the specificity of HyperChIP is resistant to the 

approximation, since the whole model fitting process is based on the same 

approximation as well. More specifically, it is 𝜇̂𝑖 rather than 𝜇𝑖 that is used in the MVC 

fitting and parameter estimation procedures. Accordingly, the aim of these procedures 

is to make the resulting model fit the observed 𝑡̂𝑖 𝑓(𝜇̂𝑖)⁄  rather than the unobserved 

𝑡̂𝑖 𝑓(𝜇𝑖)⁄  . In fact, 𝜇̂𝑖  is used as an ordinary covariate for regressing variances 

throughout the procedures, though it is not strictly non-stochastic. 

  To verify our speculation, we performed a series of statistical simulation in which 

formulas (1) and (2) were used as the data generation process, and we found that 



the overall p-value distribution was very uniform on [0, 1] across various scenarios. 

Please refer to Note S1 in Additional file 2 for the simulation results as well as a detailed 

discussion of the topic. 

 

 

2. The comparisons between HyperChIP and the other methods in Figure 1 and Figure 

2 are nice and informative. For the tumor progression analysis in Figure 5F and 5G 

and for the pan-cancer analysis in Figure 6, it would be interesting to compare 

HyperChIP with the other methods too (i.e. those methods shown in Figures 1 and 2) 

to see whether using the same number of HVRs obtained from the other methods can 

achieve similar results/performance. 

Reply: sincerely thanks for this suggestion. We have accordingly performed new 

analyses and have added a paragraph in Discussion (the 2nd one; page 15) to discuss 

the influence of the specific hypervariable analysis method on various downstream 

analyses. In detail, we first applied all the other methods to the LUAD H3K27ac ChIP-

seq data set (the same number of top-ranked proximal/distal HVRs as identified by 

HyperChIP were selected for each method). For these methods, the correlations of 

selected HVRs with tumor progression stage were either roughly as strong as 

observed from HyperChIP or weaker (Additional file 1: Fig. S16). Then, we applied 

these methods to the pan-cancer ATAC-seq data set and repeated the t-SNE analysis 

as presented in Figure 6a. On the one hand, the two-dimensional t-SNE plots 

generated by different methods exhibited similar structures (Additional file 1: Fig. S17). 

On the other hand, we noticed that HyperChIP performed better in revealing fine 

structures among the samples. In particular, it showed an ability to more accurately 

distinguish between the cancer types belonging in the same super class. Examples 

included the KIRC and KIRP types of the kidney carcinoma class, the GBM and LGG 

types of the brain cancer class, and the COAD and STAD types of the DIAD class 

(Additional file 1: Figs. S18-S20). Together, these results further suggested the stable 

performance of HyperChIP. 

 

 

3. The authors examined the relationship between single nucleotide variants and HVRs. 

In tumor samples, copy number variations (CNVs) can be prevalent. CNVs often 

involve more than one nucleotide. I wonder whether it is feasible here to also analyze 

the relationship between the hypervariable signals and CNVs. If this analysis feasible, 

it would be useful to know to what extent the hypervariable signals depend on CNV? 

If it is not feasible, it might be helpful to discuss it. More generally, it will be useful to 

know whether analyzing hypervariable signals is only useful in cancer studies (where 

changes in the genomic landscape including genomic DNA are substantial) or it is also 



useful for studying normal samples. 

Reply: sincerely thanks for this valuable comment. It is really interesting to explore 

whether hypervariable ChIP/ATAC-seq analysis is useful in biological contexts where 

the associated genomic variation is not as substantial as in cancer studies. 

  A CNV analysis was performed based on the NSCLC ATAC-seq data set as well. 

We first considered an ATAC-seq peak region as associated with somatic CNV only if 

it overlapped CNV segments in more than 5 patients, since the CNV segments 

identified from all the NSCLC patients together occupied almost the whole genome 

(>95%). Even under this cutoff, a considerable proportion of the identified HVRs were 

found to be associated with somatic CNV (31.8% and 28.7% for the proximal and distal 

HVRs, respectively), demonstrating a clear association between the hypervariable 

ATAC-seq signals and CNV. Moreover, both the two proportions were significantly 

higher than observed from randomly selected peak regions (Additional file 1: Fig. S8). 

  We next applied HyperChIP to two non-cancer data sets. The first data set can serve 

as an example for studying the variation in TF binding intensities across normal 

humans. This data set consisted of CTCF ChIP-seq samples of 17 lymphoblastoid cell 

lines (LCLs) derived from different human individuals, including 6 Caucasian 

individuals, 7 Yoruban individuals, and 4 individuals from the San population. 

Compared with the cancer data sets, the number of significant HVRs identified from 

this data set was much smaller (364 proximal HVRs and 498 distal ones with BH-

adjusted p-values less than 0.1; see also Tables 2 and 3). We then performed principal 

component analysis (PCA) of the samples with all CTCF peak regions or only the 

HVRs as features. Interestingly, while the LCLs from different populations were mixed 

together in the former case, these LCLs were well clustered by their populations of 

origin in the latter case (Fig. 7a, b). This finding suggested that the hypervariable CTCF 

binding signals captured by HyperChIP across the LCLs were useful for dissecting the 

similarity structure among them. 

  The second data set comprised ATAC-seq samples of mouse preimplantation 

embryos at different stages (the 2-cell, 4-cell, 8-cell embryos and the inner cell masses 

(ICMs) of the blastocysts) and mouse embryonic stem cells (mESCs; derived from 

ICMs). This data set can serve as a good example to illustrate the utility of 

hypervariable analysis for samples with temporal labels. Applying HyperChIP, we 

identified 303 proximal HVRs and 383 distal ones (BH-adjusted p-value<0.1). PCA with 

these HVRs as features revealed that a large proportion (71.6%) of the ATAC-seq 

signal variability at these regions was accounted for by the first principal component, 

which showed a very strong association with the development timeline (Fig. 7c). We 

then accordingly classified the samples into early-stage and late-stage ones, and we 

repeated the motif analysis applied to the pan-cancer ATAC-seq data set to identify 

stage-specific regulators (Fig. 7c, d). The identified regulators were largely consistent 



with previous reports as well as their gene expression profiles (Fig. 7d-f; Additional file 

1: Fig. S15). Please refer to the section of “Applying HyperChIP to non-cancer data 

sets” (page 13) for details. 

  Together, these findings indicated the usefulness of hypervariable analysis for 

ChIP/ATAC-seq samples from normal tissues/cells. 

 

 

4. In the discussion, the authors illustrated that proximal and distal regions have 

different variability (i.e. different \gamma estimates). It will make the argument much 

stronger if the authors can show the consequences of not separating proximal and 

distal regions in the analyses, for example, for the analyses in Figures 1,2,5,6. 

Reply: thanks for this nice suggestion. We have accordingly applied HyperChIP to the 

identification of HVRs without separating proximal and distal regions. For simplicity, we 

refer to this analysis strategy as the combined method, and refer to the original strategy 

as the separated method. 

  Since proximal and distal regions are typically associated with distinct mean-

variance trends (Additional file 1: Fig. S1), we expect that the MVC fitting procedure of 

the combined method has to compromise between the two classes of regions, which 

will influence not only the overall rankings of all peak regions but also the rankings 

within each class. To explore this speculation, we separately evaluated the rankings of 

proximal and distal regions when comparing the performance of the two methods. 

Applying the combined method to the data sets in Table 1, we found that the rankings 

of proximal/distal regions became worse with respect to the consistency with HVGs 

and the resulting classifications of the NSCLC ATAC-seq samples (Additional file 2: 

Note S2.1). 

  We also examined the overall rankings of all peak regions when comparing the two 

methods. In the classification analysis of the NSCLC ATAC-seq samples, we ranked 

together proximal and distal regions based on either raw p-values or BH-adjusted ones 

when applying the separated method. It was found that the separated method 

outperformed the combined method in both cases (Additional file 2: Note S2.2). For 

the t-SNE analysis of the pan-cancer ATAC-seq data set, we have shown the results 

from the application of the separated method (Fig. 6a), in which a BH-adjusted p-value 

cutoff of 0.1 was applied to the selection of both proximal and distal HVRs. In effect, 

this was equivalent to combining the rankings of proximal and distal regions based on 

BH-adjusted p-values and selecting a certain number of top-ranked HVRs. Accordingly, 

we applied the combined method to the same analysis with selecting the same total 

number of top-ranked HVRs. Again, the two-dimensional t-SNE plots generated by the 

two methods were similar to each other, but the separated method performed better in 

distinguishing between the cancer types belonging to the same super class. Please 



refer to Note S2.2 in Additional file 2 for details. 

  We also applied the combined method to the analysis presented in Figure 5f, g for 

checking the correlations of identified HVRs with tumor progression stage. It was found 

that the performance was very similar to that of the separated method: 

 

For the left two plots, we selected the same number of top-ranked proximal/distal HVRs 

(as identified by the separated method) when applying the combined method; for the 

rightmost one, the same total number of top-ranked HVRs were selected. 

  Overall, we believe these findings further indicate the necessity of separating 

proximal and distal regions in hypervariable ChIP/ATAC-seq analysis. 

 

 

  



Reviewer #2: To authors: 

In this manuscript, the authors present HyperChIP, a new statistical tool that can 

identify genomic regions with hypervariable ChIP-seq and ATAC-seq signals across 

samples. HyperChIP uses scaled variances that account for the mean-variance 

dependence to rank genomic regions. An advantage of this method over existing 

methods is that it diminishes the influence of true hypervariable regions (HVRs) on 

model fitting, which increases the statistical power of the tool for detecting HVRs. The 

authors applied this method to analyze ChIP-seq and ATAC-seq data across tumors 

from patient samples in three large datasets to identify hypervariable regions (HRVs) 

in these samples. Further examination of the HVRs highlighted the need to analyze 

proximal and distal regions separately to avoid suppression of the statistical power for 

identifying proximal HRVs, which have lower variability than distal regions. The authors 

then used HyperChIP to identify HRVs among a pan-cancer ATAC-seq dataset. 

Together with a motif analysis of the HRVs, they defined classes and super classes of 

cancer types among the ATAC-seq profiles. 

 

The manuscript could be improved by addressing the following points. 

 

1. In this manuscript, the authors emphasize the need for a statistical method 

specifically to identify HRVs in human datasets, and indeed demonstrate the utility of 

HyperChIP to accomplish this task. There is no mention or discussion, however, of the 

broader need and utility of this tool outside of non-cancer human datasets or in other 

organisms. For example, it seems that HyperChIP could be used to identity HVRs 

among large ChIP-seq or ATAC-seq datasets in mouse datasets from heterogeneous 

cell populations. The authors should discuss possible broader applications of 

HyperChIP, which may increase utilization of this tool by other research groups. 

Reply: sincerely thanks for this valuable comment. It is really interesting and important 

to explore the practical utility of HyperChIP in non-cancer and/or non-human contexts. 

  Following your suggestion, we applied HyperChIP to two non-cancer data sets (one 

of them was generated from mouse cells). The first data set can serve as an example 

for studying the variation in TF binding intensities across normal humans. This data set 

consisted of CTCF ChIP-seq samples of 17 lymphoblastoid cell lines (LCLs) derived 

from different human individuals, including 6 Caucasian individuals, 7 Yoruban 

individuals, and 4 individuals from the San population. Applying HyperChIP, we 

identified 364 proximal HVRs and 498 distal ones (BH-adjusted p-value<0.1). We then 

performed principal component analysis (PCA) of the samples with all CTCF peak 

regions or only the HVRs as features. Interestingly, while the LCLs from different 

populations were mixed together in the former case, these LCLs were well clustered 

by their populations of origin in the latter case (Fig. 7a, b). This finding suggested that 



the hypervariable CTCF binding signals captured by HyperChIP across the LCLs were 

useful for dissecting the similarity structure among them. 

  The second data set comprised ATAC-seq samples of mouse preimplantation 

embryos at different stages (the 2-cell, 4-cell, 8-cell embryos and the inner cell masses 

(ICMs) of the blastocysts) and mouse embryonic stem cells (mESCs; derived from 

ICMs). This data set can serve as a good example to illustrate the utility of 

hypervariable analysis for samples with temporal labels. Applying HyperChIP, we 

identified 303 proximal HVRs and 383 distal ones (BH-adjusted p-value<0.1). PCA with 

these HVRs as features revealed that a large proportion (71.6%) of the ATAC-seq 

signal variability at these regions was accounted for by the first principal component, 

which showed a very strong association with the development timeline (Fig. 7c). We 

then accordingly classified the samples into early-stage and late-stage ones, and the 

same motif analysis as applied to the pan-cancer ATAC-seq data set was repeated to 

identify stage-specific regulators (Fig. 7c, d). The identified regulators were largely 

consistent with previous reports as well as their gene expression profiles (Fig. 7d-f; 

Additional file 1: Fig. S15). Please refer to the section of “Applying HyperChIP to non-

cancer data sets” (page 13) for details. 

  Together, these analyses demonstrated the utility of HyperChIP in analyzing non-

cancer and/or non-human samples. 

 

 

2. The quality of ChIP-seq datasets is inherently variable, and prior publication of a 

prior dataset(s) does not guarantee its quality. Although the authors did employ 

normalization methods to attempt to account for variations in absolute signal strength 

as well as signal-to-noise ratios among datasets, low quality datasets may be 

problematic and confound results. What quality metrics (e.g. FRiP) or standards were 

used to determine inclusion or exclusion of both ChIP-seq and ATAC-seq datasets 

used in the analyses? 

Reply: sincerely thanks for this comment. We have indeed examined the FRiPs of 

samples for each data set (Additional file 2: Note S3). On the one hand, the distribution 

of FRiPs varied considerably across different data sets, owing to various biological and 

technical reasons. For example, the mouse ATAC-seq data set was associated with 

much lower FRiPs compared to the other data sets, due to the low input materials 

obtained from preimplantation embryos [1]. On the other hand, none of the data sets 

was associated with outlier samples that had extremely low FRiP (or peak number) 

compared to the other samples in the same data set. Therefore, we basically retained 

every sample but only filtered out the NSCLC ATAC-seq samples with less than 40k 

peaks, which was based on our previous experience in analyzing ATAC-seq data sets 

from cancer studies. 



  For the sake of rigor, we also performed the related benchmarking analyses without 

filtering out any NSCLC ATAC-seq samples. Overall, the performance of all the 

involved methods was worse than before, but HyperChIP still performed relatively 

better than the other methods. Please refer to Note S3 in Additional file 2 for details. 

 

 

3. The ChIP-seq datasets selected for evaluation of HyperChIP include histone mark 

H3K27ac and Pol II, neither of which involve sequence-specific binding of a TF. How 

does HyperChIP perform on a sequence-specific TF ChIP-seq dataset (e.g. CTCF)? 

Given the potential utility of HyperChIP in the larger genomic community to define 

HVRs (or peaks) that have biological significance, evaluation of such dataset would be 

valuable. 

Reply: sincerely thanks for this valuable comment. We have accordingly incorporated 

a new data set consisting of CTCF ChIP-seq samples of 17 LCLs derived from different 

human individuals. Please refer to the first point as well as the section of “Applying 

HyperChIP to non-cancer data sets” (page 13) for details. 

 

 

4. The authors define a proximal region as a region with a distance of less than 5kb to 

a transcription start site (TSS), whereas other regions were deemed to be distal 

regions. A window -/+ 5kb to the TSS seems like an excessively large window, 

especially since regions up to +5kb of the TSS are not commonly considered to be 

"proximal". The authors should justify why they chose this particularly large window to 

define a proximal region. 

Reply: sincerely thanks for this comment. We propose the separation of proximal and 

distal regions in hypervariable ChIP/ATAC-seq analysis because the global 

ChIP/ATAC-seq signal variability in distal regions is typically higher than that in 

proximal regions (Fig. 8). A primary reason accounting for this difference is that the 

activity of distal regulatory elements is much more variable across cellular contexts 

and human individuals than is gene expression [2-4], while the activity of proximal ones 

is tightly connected with the expression of nearby genes. The use of a 5kb window to 

define proximal regions is exactly for capturing such regulatory elements whose activity 

is strongly correlated with the expression of nearby genes. 

Specifically, we examined, for each data set in Table 1, the Pearson correlation 

coefficient (PCC) between the ChIP/ATAC-seq signal intensities in each peak region 

and the expression of the nearest gene (log2-CPM values calculated from RNA-seq 

samples). We then performed a regression of the PCC values (by applying LOWESS: 

locally-weighted polynomial regression [5]) against the distances between peak 

regions and genes (Additional file 2: Note S4). For each data set, the fitted PCC 



achieved its highest value at the distance of 0, which corresponded to the peak regions 

occupying a TSS, and it gradually decreased as the distance became larger. We 

noticed that the peak-gene association was still strong up to 5kb away from TSS. In 

particular, the fitted PCC at 5kb was within 0.1 of the highest value for each data set. 

Moreover, for both the H3K27ac ChIP-seq and ATAC-seq data sets, the fitted PCC 

curves had break points near 5kb (the curve associated with the Pol II ChIP-seq data 

set had a break point less than 2kb). We therefore have chosen 5kb as the distance 

cutoff for separating proximal and distal regions. 

For the sake of rigor, we also tried using 2kb as the distance cutoff and repeated the 

benchmarking analyses as presented in Figure 1c, d and Figure 2. Overall, the 

performance of HyperChIP was better and more stable than all the other methods. 

 

 

5. For the mean-variance trends of associated with different datasets, the following 

graphs are shown: 

H3K27ac proximal regions (observed) - Fig 1A 

H3K27ac proximal regions (scaled) - Fig 1B 

ATAC-seq proximal regions (observed) - Fig 1A 

H3K27ac distal regions (observed) - Supp Fig 1 

ATAC-seq distal regions (observed) - Supp Fig 1 

Pol II proximal regions (observed) - Supp Fig 1 

Pol II distal regions (observed) - Supp Fig 1 

 

The authors should include the rest of the graphs in the Supplement, showing the 

observed and scaled variances for both proximal and distal regions for all three 

datasets. 

Reply: thanks for this nice suggestion. We have accordingly filled the missing graphs. 

The Figures S1 and S2 in Additional file 1 shows the observed and scaled variances 

for all cases, respectively. 

 

 

6. In Supplementary Figure 4 - For the Pol II proximal regions shown in A and B, the 

authors should comment on the (potential) discrepancy in the proportion of high 

intensity regions ranked in the top 2000 HVRs and LVRs. More specifically, why do 

they see a large rise in the second to last column (left to right) of the higher mean 

intensity for the HVRs (Supp Fig 4A) and a corresponding dip in the second to last 

column (left to right) of the higher mean intensity for the LVRs (Supp Fig 4B). This trend 

seems unusual compared to the other datasets. 

Reply: sincerely thanks for this comment. For the Pol II ChIP-seq data set, we carefully 



examined the distributions of top-ranked proximal HVRs and LVRs in the mean-

variance scatter plot (Additional file 1: Fig. S6). It was found that the top-ranked LVRs 

form two clusters that are somewhat separated from one another in the plot, owing to 

a gap largely corresponding to the 70th to 90th percentile of mean intensities. As a 

result, the proportion of the LVRs dips at the corresponding two groups of regions, 

leading to a bimodal distribution profile as well as a rise in the HVR proportion that is 

more dramatic compared to the other two data sets. Since this pattern is not very 

typical of practical ChIP/ATAC-seq data (according to our experience) and it does not 

essentially conflict with our model fitting strategy, which is to use only low-intensity 

regions to estimate parameters, we did not explore it in depth but explicitly pointed it 

out and commented on it in the manuscript (page 8). 

 

 

7. In Methods, under "Input matrices for normalization", the authors should replace 

"genders" with "biological sex". 

Reply: thanks for this nice reminder. We have accordingly made a modification in the 

section (page 18). 
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Second round of review

Reviewer 1

The authors have satisfactorily addressed my previous questions. 

Reviewer 2

The authors have sufficiently addressed my concerns. I think HyperChIP will be a valuable tool 
for analyzing of hypervariable signals across both ChIP and ATAC samples. 


